Sklearn
课程亮点:
十一周sklearn课程,让菜菜带你认识sklearn,带你深入浅出地探索算法的神秘世界。我会为你解读sklearn中的主流算法,带你处理数据,调整参数,完善算法,调用结果。我会为你解析参数,助你理解算法原理,也会带你遍历案例,带你实战给你刷经验。十一周之后,人人都能够三行实现算法,实现少加班,多钻研,在数据行业乘风破浪的目标,为成为优秀的数据挖掘工程师打下坚实的基础~
学习目标:
使用数据科学领域切主流语言python及其建模库sklearn库座位课程核心工具,基于真实数据集和项目案例,集合python工具与机器学习算法完成整个案例实战
课程内容:
第1章: 菜菜的机器学习sklearn课程介绍
第2章: 决策树
2.1分类树
2.2回归树
2.3回归树案例:用回归树拟合正弦曲线
2.4案例:泰坦尼克号生存者预测
第3章: 随机森林
3.1集成算法概述
3.2随机森林分类器 、回归器
3.3案例:用随机森林填补缺失值
3.4机器学习中调参的基本思想
3.5案例:随机森林在乳腺癌数据上的调参
第4章: 数据预处理和特征工程
4.1数据预处理与特征工程
4.2数据预处理:无量纲化:数据归一化、缺失值、处理分类型数据、处理连续型数据
4.3特征选择过滤法:方差过滤 、卡方过滤、F检验和互信息法、嵌入法、包装法
第5章: 主成分分析PCA与奇异值分解SVD
5.1降维算法
5.2参数应用案例:高维数据的可视化
5.3属性应用案例:人脸识别中的components_应用
5.4接口应用案例:用人脸识别看PCA降维后的信息保存量
5.5接口应用案例:用PCA实现手写数字的噪音过滤
5.6总结:原理,流程,重要属性接口和参数
5.**CA实现784个特征的手写数字的降维
第6章: 逻辑回归与评分卡
6.1逻辑回归
6.******rn当中的逻辑回归
6.3二元逻辑回归的损失函数
6.4正则化:重要参数penalty & C
6.5逻辑回归的特征工程
6.6重要参数max_iter - 梯度下降求解逻辑回归的过程
6.7梯度的概念与解惑、步长的概念与解惑
6.8二元回归与多元回归:重要参数solver & multi_class
6.9样本不均衡与参数class_weight
6.1评分卡案例 - 评分卡与完整的模型开发流程
6.11评分卡 - 数据预处理- 重复值与缺失值、异常值
第7章: 聚类算法KMeans
7.1无监督学习概述,聚类vs分类
7.******rn当中的聚类算法
7.3簇内平方和,时间复杂度
7.*****ns - 重要参数n_clusters
7.5聚类算法的模型评估指标
7.6案例:轮廓系数找n_clusters
7.7案例:Kmeans做矢量量化
第8章: 支持向量机 (上)
8.**VM
8.2线性SVC的损失函数
8.3函数间隔与几何间隔
8.4拉格朗日对偶函数
8.5线性SVM可视化
8.6案例:如何选取核函数
8.7案例:在乳腺癌数据集上探索核函数的性质
第9章: 支持向量机 (下)
9.1简单复习支持向量机的基本原理
9.2参数C的深入理解:多个支持向量存在的理由
9.3二分类SVC中的样本不均衡问题:重要参数class_weight
9.**VC的模型评估指标
9.5混淆矩阵与准确率
9.6精确度Precision、召回率Recall与F1 measure
9.7对多数类样本的关怀:特异度Specificity与假正率FPR
9.******rn中的混淆矩阵
9.**OC曲线:Recall与假正率FPR的平衡
9.1案例:预测明天是否会下雨 - 案例背景
9.11案例:导库导数据,探索特征,jupyter中的快捷键
9.12案例:分集,优先处理标签
9.13案例:描述性统计,处理异常值
9.14案例:现实数据上的数据预处理
9.15案例:现实数据集上的数据预处理 - 处理连续型变量
9.16案例:建模与模型评估
9.17案例:模型调参:追求精确度与recall的平衡
第10章: 回归大家族:线性回归,岭回归,Lasso与多项式回归
10.1课时 182 : 线性回归大家族
10.2多元线性回归的基本原理和损失函数
10.3回归类模型的评估指标
10.4多重共线性:含义,数学,以及解决方案
10.5岭回归处理多重共线性
10*****so
10.7线性数据与非线性数据
10.8线性vs非线性模型
10.9离散化:帮助线性回归解决非线性问题
10.1多项式回归
第11章: 朴素贝叶斯
11.1概率论基础 - 贝叶斯理论等式
11.2瓢虫冬眠:理解条件概率
11.3贝叶斯的性质与后验估计
11.4汉堡称重:连续型变量的概率估计
11******rn中的朴素贝叶斯
11.6高斯朴素贝叶斯
11.7多项式朴素贝叶斯
11.8伯努利朴素贝叶斯
11.9补集朴素贝叶斯
11.1案例:贝叶斯做文本分类
第12章: XGBoost