大连文都考研

2020考研数学一证明题答题技巧介绍

发布日期:2019年06月28日

1.结合几何意义记住零点存在定理、中值定理、泰勒公式、极限存在的两个准则等基本原理,包括条件及结论。知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。

1.结合几何意义记住零点存在定理、中值定理、泰勒公式、极限存在的两个准则等基本原理,包括条件及结论。

知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如某一年的考研数学一的真题要求考生证明极限的存在性并求极限。

只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。

这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决。

2.借助几何意义寻求证明思路。

一个证明题,大多时候是能用其几何意义来正确解释的,当然基础的是要正确理解题目文字的含义。

如某年考研数学一真题涉及到中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取大值的点(正确审题:两个函数取得大值的点不一定是同一个点)之间的一个点。

相关资讯
考研报名小解析
相关课程